United Approach to Modelling of the Hot Deformation Behavior, Fracture, and Microstructure Evolution of Austenitic Stainless AISI 316Ti Steel

نویسندگان

چکیده

Hot deformation is one of the main technological stages products made from metallic materials. It strictly required to decrease costs developing optimized technologies at this stage without a significant in products’ quality. The present investigation offers an algorithm unite three different models predict hot behavior, fracture, and microstructure evolution. compression tension tests AISI 316Ti steel were conducted using thermomechanical simulator Gleeble 3800 for models’ construction. strain-compensated constitutive model Johnson–Mehl–Avrami–Kolmogorov (JMAK)-type grain structure evolution show satisfactory accuracy 4.38% 6.9%, respectively. critical values modified Rice Tracy fracture criteria determined experimental relative cross-section reduction finite element calculation stress triaxiality. developed approved stainless by torsion with test.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain Size Effect on the Hot Deformation Processing Map of AISI 304 Austenitic Stainless Steel

In this study, the hot deformation processing map of AISI 304 austenitic stainless steel in two initial grain sizes of 15 and 40 μm was investigated. For this purpose, cylindrical samples were used in the hot compression test at the temperature range of 950-1100 °C and the strain rate of 0.005-0.5% s-1. At first, the relationship between the peak stress and Zener-Hollomon parameter w...

متن کامل

Hot Deformation Behavior of 17-7 PH Stainless Steel

To investigate the hot deformation behavior of 17-7 PH stainless steel, hot compression tests were carried out at the temperatures of 950, 1050 and 1150 oC and strain rates of 0.001 s-1 to 0.1 s-1. Accordingly, the hot working behavior was studied by the analyses of flow stress curves, work hardening rate versus stress curves, exponent- type constitutive equations and deformed microstructures. ...

متن کامل

The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhesion of these films with that of a well-known and strongly adherent system, detailed adhesion tes...

متن کامل

Stainless Steel Type 316Ti

Allegheny Ludlum Type 316Ti (UNS S31635) is a titanium stabilized version of Type 316 molybdenum-bearing austenitic stainless steel. It is also known as DIN/EN designation No. 1.4571. The Type 316 alloys are more resistant to general corrosion and pitting/crevice corrosion than the conventional chromium-nickel austenitic stainless steels such as Type 304. They also offer higher creep, stress-ru...

متن کامل

Microstructure and mechanical properties evaluation of diffusion bonded joints of titanium to AISI 304 austenitic stainless steel

In this study, diffusion bonding between titanium and AISI 304 austenitic stainless steel by Ag interlayer was investigated. In order to carry out this research, samples prepared after surface preparation were placed inside the fixture and placed at the temperatures of 750,800 and 850 °C in the 30,60 and 90 min in the furnace under argon protective gas. The phase transformation and microstructu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11073204